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We introduce two operational entanglement measures that are applicable for arbitrary multipartite (pure
or mixed) states. One of them characterizes the potentiality of a state to generate other states via local
operations assisted by classical communication and the other characterizes the simplicity of generating the
state at hand. We show how these measures can be generalized to two classes of entanglement measures.
Moreover, we compute the new measures for pure few-partite systems and use them to characterize the
entanglement contained in a three-qubit state. We identify the Greenberger-Horne-Zeilinger andW state as
the most powerful pure three-qubit states regarding state manipulation.
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Entanglement is of paramount importance in many fields
of science. Because of its existence, applications such as
teleportation, quantum computation, quantum simulation,
and quantum error correction, to name a few, are feasible
[1]. Moreover, the application of entanglement theory in
other fields of science, most prominently condensed matter
physics, has opened new routes towards the understanding
of quantum many-body systems [2]. Because of its impor-
tance, an enormous effort has been made to qualify and
quantify multipartite entanglement. Different entanglement
classes have been identified and several entanglement
measures have been introduced [3]. Some of them origi-
nated from analyzing the potentiality of a state for a
particular realization of an application, such as the local-
izable entanglement [4], others arose from the generaliza-
tion of classical correlation measures, such as the
generalization of the squashed entanglement [3,5].
Despite these results, we are still far from completely

understanding multipartite entanglement. The lack of
knowledge stems, on the one hand, from the fact that
the number of nonlocal parameters scales exponentially
with the number of subsystems and, on the other hand, from
the fact that the operations that are central in the inves-
tigation of entanglement, the local operations assisted by
classical communication (LOCC), are notoriously difficult
to analyze in general [6]. The importance of LOCC in this
context is due to the fact that LOCC corresponds to those
operations which can be implemented without consuming
entanglement. This implies that entanglement is the re-
source to overcome the restriction to LOCC and that the
sole condition a function has to fulfill to be a valid
entanglement measure is that it is nonincreasing under
LOCC [3,7]. For the bipartite case, a simple criterion for
pure state transformations via LOCC has been presented
[8]. These results do not only allow one to identify the
state jΦþi ∝ P

ijiii as the maximally entangled state,
which can be transformed into any other bipartite state

deterministically via LOCC, but also allow one to introduce
new entanglement measures. Because of the existence of
different SLOCC (stochastic LOCC) classes in the multi-
partite setting [9,10], i.e., the existence of pairs of states that
cannot even probabilistically be transformed locally into
each other, there does not exist a single state which is the
optimal resource to overcome LOCC. This is why a set of
states, the maximally entangled set (MES) of n subsystems,
MESn, has to be considered [11]. It is the minimal set of
states from which any fully entangled n-partite state can be
obtained via LOCC.
In order to quantify entanglement, possible LOCC

transformations among multipartite states have to be further
investigated with the intention to identify new operational
entanglement measures. This is precisely the aim of this
Letter. We introduce operational entanglement measures
for multipartite states (pure or mixed) of arbitrary dimen-
sions [12]. As we are going to show, the measures can be
easily computed whenever all possible LOCC transforma-
tions are known, as in the case of pure states describing
few-partite systems [8,13,14]. The operational character of
the new measures allows us to prove very easily that they
are indeed nonincreasing under LOCC and admits a
generalization to two classes of entanglement measures.
We outline how to compute the newmeasures for bipartite

pure states of arbitrary dimensions. For pure three-qubit
systems we derive explicit formulas for them and show that
they, together with some well-known bipartite measures,
allow us to completely characterize the entanglement con-
tained in the state in an operational way. This characteri-
zation shows that the W and GHZ state are the most useful
tripartite states regarding state manipulation.
Throughout this Letter, σx; σy; σz denote the Pauli

operators and 1 the identity operator. When studying
possible LOCC transformations we always consider rep-
resentatives of local unitary (LU)-equivalence classes, as
LUs do not alter the entanglement contained in a state and
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can obviously always be applied to a state. We say that a
state jΨi can reach a state jΦi if there exists a LOCC
protocol that transforms jΨi into jΦi (deterministically). In
this case, jΦi is accessible from jΨi.
Let us now introduce the new operational entanglement

measures. For a given state jΨi, we denote byMaðjΨiÞ the
set of states that can be accessed via LOCC from jΨi and by
MsðjΨiÞ the set of states that can reach jΨi. The following
two magnitudes then occur naturally in the context of
possible LOCC transformations: the source volume,
VsðjΨiÞ ¼ μ½MsðjΨiÞ�, which measures the amount of
states that can be used to reach the state jΨi, and the
accessiblevolume,VaðjΨiÞ ¼ μ½MaðjΨiÞ�, whichmeasures
the amount of states that can be accessed by jΨi via LOCC.
Here, μ denotes an arbitrary measure in the set of LU
equivalence classes. The underlying idea is that if a state jΨi
can be reached by many states, i.e., ifMsðjΨiÞ is very large,
then the state is not very powerful, as any state in MsðjΨiÞ
could be used for the same purpose and for possibly more
applications. On the other hand, if the accessible set is very
large, the state is very valuable, as it can be used for any
potential application of any state in MaðjΨiÞ.
Because of the operational meaning of Ma and Ms, it is

easy to construct now operational entanglement measures. In
order to do so, we first show thatMa (Ms) can only become
smaller (larger) under LOCC, respectively. Consider a state
jΨi and any state jΦiΨ which is accessible from jΨi via
LOCC. As any state inMsðjΨiÞ can first be transformed via
LOCC into jΨi and then to jΦiΨ, it is obvious thatMsðjΦiΨÞ
contains MsðjΨiÞ. That MaðjΦiΨÞ⊆MaðjΨiÞ can be easily
verified noting that any state that can be reached from a state
jΦiΨ can, in particular, be reached from a state that can reach
jΦiΨ. Hence, any properly normalized and rescaled measure
of these sets is indeed an entanglement measure; i.e., it does
not increase under LOCC. A possible choice would be
EaðjΨiÞ ¼ VaðjΨiÞ=Vsup

a and EsðjΨiÞ ¼ 1 − VsðjΨiÞ=
Vsup
s , where Vsup

a (Vsup
s ) denote the maximally accessible

(source) volume according to the measure μ. Note that these
operational entanglement measures are applicable to arbi-
trarymultipartite systems of any dimension.Moreover, these
are valid entanglement measures for mixed states. Note
further thatMsðjΨiÞ ¼ ∅ [implying thatVsðjΨiÞ ¼ 0] if and
only if the state jΨi is in theMES, as these are the only states
that cannot be reached by any other state [11]. We elaborate
on how these measures can be computed in the case of few-
partite pure states below.
The notion of these entanglement measures can be

generalized in the following way. Considering an n-partite
state, jΨi ∈ CId1 ⊗ � � � ⊗ CIdn , one can also measure its
entanglement by (i) the amount of ðn − kÞ-partite entangled
states one can reach from jΨi, for k ≥ 1, or (ii) by the
amount of reachable states in CId

0
1 ⊗ � � � ⊗ Cd0n , where at

least one of the local dimensions d0i is reduced. Similarly,
one can generalize the notion of the source volume to a

whole class of entanglement measures by relating not only
elements of the same Hilbert space.
Now, we are going to use these quantities and the

previously obtained results on possible LOCC transforma-
tions [8,13,15] in order to quantify the entanglement
contained in few-body pure states. Let us start by consid-
ering the bipartite case. We consider without loss of
generality two d-level systems. It is well known that a
state jΨi can be transformed into a state jΦi via LOCC if
and only if λΨ is majorized by λΦ, i.e., λΨ ⪯ λΦ, where λΨ
denotes the vector containing the eigenvalues of the single
party reduced state of jΨi [8]. As the state is normalized,
any vector λΨ belongs to a d-dimensional simplex. It has
been shown that the set SðyÞ ¼ fx ∈ Rdjx ⪯ yg is the
convex hull of d! points obtained by permuting the
components of y [16]. Hence, in this parameter space
and using the Lebesgue measure, the source and accessible
volume of a state jΨi are given by the volume of SðλΨÞ and
AðλΨÞ ¼ fx ∈ RdjλΨ ⪯ xg, respectively (up to a constant
factor, see Ref. [17]). In Ref. [17] we present closed
formulas for Es and its generalization. Moreover, we
present an algorithm to determine Ea for arbitrary dimen-
sion and also explicit formulas for low dimensions, for
which the new measures can be used to completely
characterize the Schmidt coefficients.
Let us now present a complete characterization of

entanglement of an arbitrary pure three-qubit state. In order
to understand how the measures Ea and Es are defined in
this case, we give a few remarks. First, we consider only the
source and accessible volumes of genuinely entangled
three-qubit states (i.e., we do not take into account
biseparable states). Second, when we consider LOCC
incomparable families of states, such as the W and GHZ
SLOCC classes, there is a freedom in choosing different
measures μ1 and μ2 to compute the volumes for the
different families without compromising the behavior
under LOCC of the entanglement measures. We exploit
this freedom out of mathematical convenience. Last, even
when considering LOCC comparable states, there exist
states for which the corresponding source or accessible
states are in manifolds of different dimensionality. Hence, if
we use the same measure μ in both cases, this would assign
a zero value to the accessible or source volumes of certain
states even though they can indeed reach or be reached by
other states, leading to a too coarse grained classification.
Even though this would be a legitimate choice, we choose
to use here a finer classification by choosing different
measures to compute the volumes whenever the corre-
sponding manifolds have different dimensions. Note that
this choice, in contrast to the aforementioned one, allows us
to compare the relative strength of states whose volumes
have the same dimensionality. It should be clear, however,
that a state with, e.g., a nonvanishing four-dimensional
accessible volume is infinitely more powerful than a state
with a three-dimensional accessible volume.

PRL 115, 150502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

9 OCTOBER 2015

150502-2



Up to LUs, any state in the W class can be written as
[11,15]

jΨð~xÞi ¼ ffiffiffiffiffi
x0

p j000i þ ffiffiffiffiffi
x1

p j100i þ ffiffiffiffiffi
x2

p j010i þ ffiffiffiffiffi
x3

p j001i;
ð1Þ

where x1; x2; x3 > 0, x0 ≥ 0, and
P

3
i¼0 xi ¼ 1. Note that

any state jΨð~xÞi can be represented by the corresponding
vector ~x ¼ ðx1; x2; x3Þ within a three-dimensional simplex
S3 (see Fig. 1) [15]. As shown in Ref. [15], jΨð~xÞi can be
transformed into jΨð~yÞi via LOCC if and only if
xi ≥ yi; ∀ i ∈ f1; 2; 3g. Because of that, it can be easily
verified that the MES in theW class, theW MES, is the set
of states with x0 ¼ 0. These states cannot be obtained from
any other state, but any state in theW class can be obtained
from some state with x0 ¼ 0 [11].
Within the parameter space explained above, the acces-

sible volume and the source volume of an arbitrary state
jΨð~xÞi can be easily shown to be (see also Fig. 1)

VaðjΨð~xÞiÞ ¼ x1x2x3; VsðjΨð~xÞiÞ ¼ x30
6
: ð2Þ

As mentioned above, it follows already from their defi-
nition that the corresponding measures, EaðjΨð~xÞiÞ ¼
27VaðjΨð~xÞiÞ and EsðjΨð~xÞiÞ ¼ 1 − 6VsðjΨð~xÞiÞ, are
entanglement measures. A fact that can be particularly
easily verified for theW class using Eq. (2) and the fact that
no xi can be increased via LOCC. Note that the W state
maximizes both new measures, with EaðjWiÞ ¼ 1 and
EsðjWiÞ ¼ 1. Hence, the W state is the state that reaches
the most other states deterministically via LOCC. It can
therefore be regarded as the most useful state in theW class.
Let us now characterize the entanglement contained in a

state in the W class. Because of the simplicity of this class,

only bipartite entanglement measures, e.g., the three
bipartite entanglement between party i and the remaining
parties, measured with, e.g., the squared concurrence [18],
CiðjΨð~xÞiÞ ¼ 4xið1 − xi − x0Þ, are required to uniquely
characterize the state (up to LUs). However, one could
also employ the new measures and any of the bipartite
measures for this purpose. In fact, as any three measures of
the set fC1ðjΨiÞ; C2ðjΨiÞ; C3ðjΨiÞ; EaðjΨiÞ; EsðjΨiÞg are
independent, we have that a state in theW class is uniquely
determined by any three of these operational entanglement
measures.
Note that for any state in the W MES it holds that

VsðjΨð~xÞiÞ ¼ 0. Moreover, for these states we have
CiðjΨð~xÞiÞ ¼ 4xið1 − xiÞ. Hence, they can be easily char-
acterized by any two of these bipartite measures or by any
bipartite measure and EaðjΨð~xÞiÞ. Note that the charac-
terization via operational entanglement measures of arbi-
trary states in the W class presented here can be easily
generalized to n-qubit systems [17].
Let us now investigate the more complicated GHZ class.

A state in the GHZ class can be written (up to LUs) as [11]

jΨðg; zÞi ¼ g1x ⊗ g2x ⊗ g3xPzjGHZi; ð3Þ

with ðgixÞ†gix ¼ 1
2
1þ giσx, gi∈ ½0;1=2Þ ∀ i, g ¼ ðg1; g2; g3Þ,

Pz ¼ diagðz; 1=zÞ; z ∈ C, with jzj ≤ 1. As shown in
Ref. [11], a state is in GHZ MES if and only if z ¼ 1 or
z ¼ i and either none of the gi’s vanish or all of them
vanish, corresponding to the GHZ state.
In Ref. [13] the necessary and sufficient conditions for

the existence of a LOCC transformation from a state
jΨðg; zÞi to another state jΨðh; z0Þi were obtained. As
shown there, the absolute value of z can be changed by
LOCC independently of the other parameters only if at least
one of the parameters gi vanishes, in which case jzj can be
arbitrarily decreased. As in this case, different LOCC
transformations are possible, and we treat the cases
(A) gi ≠ 0 for all i and (B) at least one of the parameters
gi vanishes separately.
Let us first consider case (A). Expressing the conditions

for the existence of a LOCC transformation [13] from
jΨðg; zÞi to jΨðh; z0Þi [see Eq. (3)], we obtain (i) gi ≤
hi ∀ i, (ii) g1g2g3=ðh1h2h3Þ¼ ½Reðz02Þ=ðjz0j4þ1Þ�½ðjzj4þ
1Þ=Reðz2Þ� ¼ ½Imðz02Þ=ðjz0j4−1Þ�½ðjzj4−1Þ=Imðz2Þ�.
Note that condition (ii) constitutes generically two

independent equalities. However, in case the numerator
and/or the denominator of one ratio vanishes, different
conditions have to hold (see Ref. [19]).
We now present a characterization of the entanglement

contained in an arbitrary state in the GHZ class.
For this purpose, we first consider states that are neither

in GHZ MES nor any gi vanishes, i.e., case (A) with
z ≠ 1; i. The other cases are treated below. The accessible
and the source volume are given by (see Ref. [19])

FIG. 1 (color online). Any state jΨð~xÞi is uniquely represented
by ~x in the interior of the simplex S3. The source (tetrahedron)
and the accessible (cuboid) volume of jΨð~xÞi are depicted. The
light surface corresponds to the states in the MES. Biseparable
(fully separable) states, for which exactly one (at least two) xi is
(are) zero, are represented by points on the white surface of S3,
respectively.

PRL 115, 150502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

9 OCTOBER 2015

150502-3



VaðjΨðg; zÞiÞ ¼ ð1=2 − g1Þð1=2 − g2Þð1=2 − g3Þ; ð4Þ

VsðjΨðg; zÞiÞ

¼ G

�
1þ fz

�
logðfzÞ

�
1 −

1

2
logðfzÞ

�
− 1

��
; ð5Þ

with fz ¼ 2jReðz2Þj=ð1þ jzj4Þ and G ¼ g1g2g3 (see
Fig. 2).
We show in Ref. [19] that EaðjΨðg; zÞiÞ ¼

8VaðjΨðg; zÞiÞ and EsðjΨðg; zÞiÞ ¼ 1 − 8VsðjΨðg; zÞiÞ
together with the three bipartite entanglement measures
and one additional bit, that provides information about a
specific state in the source set, uniquely determine the five
parameters z ¼ reiϕ; g1; g2; g3 and therefore uniquely char-
acterize the entanglement of the states up to complex
conjugation (taken with respect to the computational basis)
and LUs [21] (see Ref. [19] for details).
In Ref. [19] we show that the states where at least one gi

vanishes can be treated similarly, and that there the
entanglement of the states is uniquely determined by the
five operational entanglement measures.
It remains to consider the states in GHZ MES, which

constitute a three parameter family. In this case only
condition (i) and the first equation in condition (ii) have
to be fulfilled, which implies that only one parameter of the
accessible states is fixed via condition (ii). Hence, for
jΨMESi, a state in MES3, we obtain the four-dimensional
accessible volume

VaðjΨMESiÞ

¼
Z

1=2

g1

Z
1=2

g2

Z
1=2

jg3j

Z
1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH=GÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH=GÞ2−1

pp drdh3dh2dh1;

ð6Þ

with G ¼ g1g2jg3j, H ¼ h1h2h3. Putting the lower limits in
Eq. (6) to zero, we find Vsup

a ¼ 1=8. As the GHZ state
fulfills gi ¼ 0 ∀ i, we have EaðjGHZiÞ ¼ 1, and there-
fore the GHZ state is the state that reaches the most other

states deterministically. The entanglement of a state in
GHZ MES, for which VsðjΨMESiÞ ¼ 0, can be similarly
easily characterized, as it was possible in the W class
(see Ref. [19]).
In summary, we have introduced two novel classes of

operational entanglement measures, which are applicable to
arbitrary multipartite pure or mixed states. We then
demonstrated how these measures can be computed for
the simplest pure multipartite case (three qubits) and
showed that they can be used to completely characterize
the entanglement contained in a three-qubit state. In
Ref. [17] the new measures and its generalizations are
determined for the bipartite setting of low dimension and
the four-qubit case. It would be interesting to develop
further the analysis of LOCC convertibility among mixed
states in order to compute our measures in this case. In
addition to that and further extensions of this approach
(e.g., approximate LOCC transformations, multicopy case),
it would also be appealing to connect our measures with
different quantum information protocols and condensed
matter phenomena, which we leave for future research.
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